Math Placement Sample

Question 1: (1 points)

$$
\begin{aligned}
& \frac{2 x}{x^{2}-16}-\frac{1}{x-4}= \\
& \text { E } \frac{2 x-1}{x^{2}-16} \\
& \text { E } \frac{1}{x-4} \\
& \text { E } \quad x-4 \\
& \text { E } \frac{2 x-1}{x^{2}-x-12} \\
& \text { E } \frac{1}{x+4}
\end{aligned}
$$

Question 2: (1 points)

$\frac{6}{\sqrt{10 x}}=$
C $\frac{\sqrt{15 x}}{5 x}$
E $\frac{3 \sqrt{5 x}}{5 x}$
E $\frac{3 \sqrt{10 x}}{5 x}$
E $\frac{\sqrt{5 x}}{3}$
E $\frac{\sqrt{10 x}}{6}$

Math Placement Sample

Question 3: (1 points)

If $3 x+2=5 y+4$ then $y=$
E $\frac{3 x-2}{5}$
C $\frac{5 x+2}{3}$
C $\frac{1}{5}$
C $\quad-\frac{3 x-2}{5}$
C $\frac{3 x+6}{5}$

Question 4: (1 points)

The positive root of the equation $x^{2}+10=29$ lies between

C 4 and 5
[9 and 10
C 6 and 7
E 1 and 3
© 5 and 6

Question 5: (1 points)

One of the factors of $35 x^{2}-8 x-3$ is

$$
\begin{array}{ll}
\mathbf{C} & 7 x+1 \\
\mathbf{C} & 7 x-3 \\
\mathbf{D} & 7 x+3 \\
\mathbf{C} & 35 x-1 \\
\mathbf{C} & 5 x-1
\end{array}
$$

Math Placement Sample

Question 6: (1 points)
Graph the equation $-3 x-2 y=6$

Question 7: (1 points)
Graph $y=|x-2|$

Math Placement Sample

Question 8: (1 points)
If $f(x)=x^{2}-k x-1$ and $f(2)=-5$, then $k=$

\mathbf{C}	-5
\mathbf{C}	-4
\mathbf{C}	2
\mathbf{C}	4
\mathbf{C}	1

Question 9: (1 points)

$$
\frac{1}{1+\sqrt{5}}=
$$

C $\frac{1+\sqrt{5}}{4}$
E $\quad-\frac{1+\sqrt{5}}{24}$
C $\frac{-1+\sqrt{5}}{4}$
C $\frac{-1+\sqrt{5}}{24}$
E $\frac{1-\sqrt{5}}{4}$
Question 10: (1 points)

| | If, for all values of $x,(x-k)^{2}=k^{2}+2 x+x^{2}$, then $k=$ |
| :--- | :--- | :--- |
| C | -2 |
| C | 1 |
| C | 0 |
| C | 2 |
| C | -1 |

Math Placement Sample

Question 11: (1 points)

If $f(x)=x^{2}+1$ and $h(x)=4 x+2$, then $f(h(3))=$
C 10
[140
C 42
C 15
[197

Question 12: (1 points)

The graph of the system of equations $\left\{\begin{array}{l}x-2 y=1 \\ 3 x+6 y=3\end{array}\right.$ consists of

E two lines intersecting where $y=3$.
E one line.
E two distinct parallel lines.
\square two lines intersecting where $x=3$.
[two lines intersecting where $x=1$.

Question 13: (1 points)

$$
\text { If } \log _{10} x=3 \text {, then } x=
$$

C 1,000
C $\frac{1}{1,000}$
[100
E 10
C $\frac{3}{10}$

Math Placement Sample

Question 14: (1 points)

In the figure shown below, if $\sin (P)=0.37$ and $p=4$, then $\mathrm{q}=$

C $4(0.37)$
© $\frac{4}{5}$
C $\frac{4}{0.37}$
E 5

[Insufficient information is given to solve this problem.

Question 15: (1 points)

$$
\begin{array}{cc}
\sin \left(90^{\circ}-\theta\right)= \\
\mathbf{E} & \sin (\theta) \\
\mathbf{E} & \cos (\theta) \\
\mathbf{E} & -\sin (\theta) \\
\mathbf{E} & 1+\cos (\theta) \\
\mathbf{E} & -\cos (\theta)
\end{array}
$$

Question 16: (1 points)
For all real numbers $x, \cos ^{2}(4 x)+\sin ^{2}(4 x)=$

\mathbf{E}	1
\mathbf{E}	0
\mathbf{D}	$\sin (8 x)$
\mathbf{E}	4
\mathbf{E}	$\cos (8 x)$

Math Placement Sample

Question 17: (1 points)

For which value(s) of x in the interval $0 \leq x \leq 2 \pi$ does $(\cos (x)-1)(\cos (x)-3)=0$?

E 1 and 3
C $\frac{\pi}{2}$
C π
E 0 and 2π
© $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$

Question 18: (1 points)

Recall that for the triangle ABC the law of cosines states that $a^{2}=b^{2}+c^{2}-2 b c \cos (\mathrm{~A})$ where a is the length of the side opposite angle A, b is the length of the side opposite angle B, and C is the length of the side opposite angle C. In the triangle shown in the figure below, what is $\cos (P)$? Note: The figure is not drawn to scale.

$$
\begin{array}{l|l}
\mathrm{C} & \frac{55}{64} \\
\mathbf{C} & \frac{5}{8} \\
\mathbf{C} & \frac{4}{5} \\
\mathbf{C} & \frac{73}{80} \\
\mathbf{C} & \frac{23}{40}
\end{array}
$$

Math Placement Sample

Question 19: (1 points)

$$
\begin{aligned}
& \text { If } f(x)=-2^{x}+x^{2} \text {, then } f(-1)= \\
& \text { E } 3 \\
& \text { C } \frac{1}{2} \\
& \text { C } \quad-\frac{3}{2} \\
& \text { D }-\frac{1}{2} \\
& \text { D } \frac{3}{2}
\end{aligned}
$$

Question 20: (1 points)

$$
\begin{array}{cl}
\log _{5}\left(\frac{1}{25}\right)= \\
\mathbf{E} & 5 \\
\mathbf{E} & -2 \\
\mathbf{C} & 2 \\
\mathbf{C} & -5 \\
\mathbf{D} & \frac{1}{2}
\end{array}
$$

