Question 1: (1 points)

$$\frac{2x}{x^2 - 16} - \frac{1}{x - 4} =$$

$$\begin{bmatrix} \frac{2x - 1}{x^2 - 16} \\ \frac{1}{x - 4} \\ \frac{1}{x - 4} \\ \frac{2x - 4}{x - 4} \\ \frac{2x - 1}{x^2 - x - 12} \\ \frac{1}{x + 4} \end{bmatrix}$$

Question 2: (1 points)

$$\frac{6}{\sqrt{10 x}} =$$

$$\frac{\sqrt{15 x}}{5 x}$$

$$\frac{3\sqrt{5 x}}{5 x}$$

$$\frac{3\sqrt{10 x}}{5 x}$$

$$\frac{\sqrt{5 x}}{5 x}$$

$$\frac{\sqrt{5 x}}{3}$$

$$\frac{\sqrt{10 x}}{6}$$

Question 3: (1 points)

If 3x + 2 = 5y + 4 then y =

$$\begin{array}{c}
\frac{3 x - 2}{5} \\
\hline \frac{5 x + 2}{3} \\
\hline \frac{1}{5} \\
\hline -\frac{3 x - 2}{5} \\
\hline \frac{3 x + 6}{5}
\end{array}$$

Question 4: (1 points)

The positive root of the equation $x^2 + 10 = 29$ lies between

	4 and	5
C	9 and	10
C	6 and	7
C	1 and	З
	5 and	6

Question 5: (1 points)

One of the factors of $35 x^2 - 8 x - 3$ is

C 7x+1C 7x-3C 7x+3C 35x-1C 5x-1

Question 6: (1 points)

Graph the equation -3x - 2y = 6

Question 7: (1 points)

Graph y = |x - 2|

Question 8: (1 points)

If
$$f(x) = x^2 - kx - 1$$
 and $f(2) = -5$, then $k = -5$
C - 4
C 2
C 4
C 1

Question 9: (1 points)

$$\frac{1}{1+\sqrt{5}} =$$

$$\frac{1+\sqrt{5}}{4}$$

$$-\frac{1+\sqrt{5}}{24}$$

$$\frac{-1+\sqrt{5}}{4}$$

$$\frac{-1+\sqrt{5}}{24}$$

$$\frac{-1+\sqrt{5}}{24}$$

$$\frac{1-\sqrt{5}}{4}$$

Question 10: (1 points)

		If, for all values of x ,	$(x-k)^2 =$	$k^2 + 2x +$	x^2 , then	<i>k</i> =
O	- 2					
O	1					
0	0					
C	2					
0	-1					

Question 11: (1 points)

If $f(x) = x^2 + 1$ and h(x) = 4 x + 2, then f(h(3)) =

- 10140
- **C** 42
- C 15
- C 197

Question 12: (1 points)

The graph of the system of equations $\begin{cases} x - 2y = 1 \\ 3x + 6y = 3 \end{cases}$ consists of

- **C** two lines intersecting where y = 3.
- C one line.
- two distinct parallel lines.
- two lines intersecting where x = 3.
- \square two lines intersecting where x = 1.

Question 13: (1 points)

If $\log_{10} x = 3$, then x =

C 1,000 **C** $\frac{1}{1,000}$ **C** 100 **C** 10 **C** $\frac{3}{10}$

Question 15: (1 points)

$$\sin(90^{\circ} - \theta) =$$

 $\begin{array}{c} & \sin(\theta) \\ \hline & \cos(\theta) \\ \hline & -\sin(\theta) \\ \hline & 1 + \cos(\theta) \\ \hline & -\cos(\theta) \end{array}$

Question 16: (1 points)

For all real numbers x, $\cos^2(4x) + \sin^2(4x) =$

	1
C	0
0	sin(8 <i>x</i>)
0	4
C	cos (8 x)

Question 17: (1 points)

For which value(s) of x in the interval $0 \le x \le 2\pi \text{does} (\cos(x) - 1)(\cos(x) - 3) = 0$?

Question 18: (1 points)

Recall that for the triangle ABC the law of cosines states that $a^2 = b^2 + c^2 - 2 bc \cos(A)$ where *a* is the length of the side opposite angle A, *b* is the length of the side opposite angle B, and *c* is the length of the side opposite angle C. In the triangle shown in the figure below, what is $\cos(P)$? Note: The figure is not drawn to scale.

Question 19: (1 points) If $f(x) = -2^{x} + x^{2}$, then f(-1) = **G** $\frac{1}{2}$ **G** $-\frac{3}{2}$ **G** $-\frac{1}{2}$ **G** $\frac{3}{2}$

Question 20: (1 points)

$$\log_5\left(\frac{1}{25}\right) =$$

