Math Placement Sample

Question 1: (1 points)
Factor: $x^{2}-16$ into $(x-4)(x+4)$
$\frac{2 x}{x^{2}-16}-\frac{1}{x-4}=$

$$
\text { Rewrite: } \frac{2 x}{(x-4)(x+4)}-\frac{1}{(x-4)}
$$

E $\frac{2 x-1}{x^{2}-16}$
Find LCD: $(x-4)(x+4)$
C $\frac{1}{x-4}$
Multiple: $\frac{2 x}{(x-4)(x+4)}-\frac{1(x+4)}{(x-4)(x+4)}$
E $x-4$
C $\frac{2 x-1}{x^{2}-x-12}$
Reduce: $\frac{2 x-x-4}{(x-4)(x+4)}=\frac{(x-4) 1}{(x-4) 1(x+4)}$
© $\frac{1}{x+4}$
Answer: $\frac{1}{x+4}$

Question 2: (1 points)

$\frac{6}{\sqrt{10 x}}=$

E $\frac{\sqrt{15 x}}{5 x}$
Rationalize $\frac{6}{\sqrt{10 x}} * \frac{\sqrt{10 x}}{\sqrt{10 x}}=\frac{6 \sqrt{10 x}}{\sqrt{100 x^{2}}}$

C $\frac{3 \sqrt{5 x}}{5 x}$
Reduce 6 and 10: $\frac{3-6-\sqrt{10 x}}{510 x}$
Answer: $\frac{3 \sqrt{10 x}}{5 x}$
巴 $\frac{3 \sqrt{10 x}}{5 x}$
E $\frac{\sqrt{5 x}}{3}$
[$\frac{\sqrt{10 x}}{6}$

Question 3: (1 points)

If $3 x+2=5 y+4$ then $y=$
E $\frac{3 x-2}{5}$
E $\frac{5 x+2}{3}$
E $\frac{1}{5}$
Divide by 5: $\frac{3 x-2}{5}=\frac{5 y}{5}$
E $\quad-\frac{3 x-2}{5}$
E $\frac{3 x+6}{5}$

$$
\text { Answer: } \frac{3 x-2}{5}=y
$$

Question 4: (1 points)

The positive root of the equation $x^{2}+10=29$ lies between

$$
\begin{array}{r}
x^{2}+10=29 \\
-10-10 \\
\hline x^{2}=19
\end{array}
$$

Take the Square of both sides: $\sqrt{x^{2}}= \pm \sqrt{19}$
$x= \pm \sqrt{19}$
For positive Root: $x=\sqrt{19}$
Estimate $\sqrt{16} \quad \sqrt{19} \quad \sqrt{25}$
[1 and 3
[. 5 and 6

Question 5: (1 points)

$$
\text { Use Trial and Error to factor }(5 x+1)(7 x-3)
$$

One of the factors of $35 x^{2}-8 x-3$ is

C $\quad 7 x+1$
[$7 x-3$
C $\quad 7 x+3$
[$35 x-1$
C $5 x-1$

Question 6: (1 points)

Graph the equation $-3 x-2 y=6$

\mathbf{X}	\mathbf{Y}
$\mathbf{0}$	-3
-2	$\mathbf{0}$

Question 7: (1 points)
Graph $y=|x-2|$

Question 8: (1 points)

If $f(x)=x^{2}-k x-1$ and $f(2)=-5$, then $k=$
C $\quad-5$
C $\quad-4$
[2
[4

$$
\begin{gathered}
f(2)=2^{2}-k(2)-1 \\
-5=4-2 k-1 \\
-5=3-2 k \\
\frac{-3}{-8}=\frac{-2 k}{-2} \\
4=k
\end{gathered}
$$

Question 9: (1 points)

$$
\frac{1}{1+\sqrt{5}}=
$$

E $\frac{1+\sqrt{5}}{4}$
E $-\frac{1+\sqrt{5}}{24}$
Rationalize: $\frac{1}{1+\sqrt{5}} * \frac{1-\sqrt{5}}{1-\sqrt{5}}$

$$
\mathbb{C} \quad \frac{-1+\sqrt{5}}{4}
$$

Foil the denominator: $\frac{1-\sqrt{5}}{1-\sqrt{5}+\sqrt{5}-\sqrt{25}}$

C $\frac{-1+\sqrt{5}}{24}$
C $\frac{1-\sqrt{5}}{4}$

$$
\frac{1-\sqrt{5}}{-4} \text { OR }-\frac{1-\sqrt{5}}{4} \text { OR } \begin{array}{r}
\frac{1-\sqrt{5}}{1-5}= \\
\frac{-1+\sqrt{5}}{4}
\end{array}
$$

Question 10: (1 points)

If, for all values of $x,(x-k)^{2}=k^{2}+2 x+x^{2}$, then $k=$
C $\quad-2$
E 1
E 0

$$
\begin{array}{r}
(x-k)(x-k)=k^{2}+2 x+x^{2} \\
x^{2}-x k-k x+k^{2}=k^{2}+2 x+x^{2} \\
x^{2}-2 x k+k^{2}=k^{2}+2 x+x^{2} \\
-x^{2}-2 x-k^{2}-k^{2}-2 x-x^{2} \\
-2 x k-2 x=0 \\
-2 x(k+1)=0 \\
k+1=0 \\
\frac{-1}{k}=-1
\end{array}
$$

Question 11: (1 points)

If $f(x)=x^{2}+1$ and $h(x)=4 x+2$, then $f(h(3))=$
E 10
C 140

$$
\begin{gathered}
\text { Find } h(3)=4(3)+2=14 \\
f(h(3))=f(14)=14^{2}+1 \\
f(14)=196+1 \\
f(14)=197
\end{gathered}
$$

[15
E. 197

Question 12: (1 points)

The graph of the system of equations $\left\{\begin{array}{c}x-2 y=1 \\ 3 x+6 y=3\end{array}\right.$ consists of

Use addition elimination method: $3(x-2 y=1)$

$$
\begin{gathered}
3 x+6 y=3 \\
\downarrow \\
3 x-6 y=3 \\
3 x+6 y=3 \\
\frac{6 x}{6}=\frac{6}{6} \\
x=1 \\
x-2 y=1 \\
1-2 y=1 \\
\frac{-1}{-2 y}=\frac{0}{-2} \\
\frac{-2}{y}=0
\end{gathered} \text { Intersect at } x=1, y=0 \text { ? }
$$

E two lines intersecting where $y=3$.
E one line.
C two distinct parallel lines.
$[$ two lines intersecting where $x=3$.
[two lines intersecting where $x=1$.

Question 13: (1 points)

$$
\text { If } \log _{10} x=3 \text {, then } x=
$$

[1,000

C $\frac{1}{1,000}$
E 100
E 10
C $\frac{3}{10}$

Question 14: (1 points)

In the figure shown below, if $\sin (P)=0.37$ and $p=4$, then $q=$

E 4(0.37)
D $\frac{4}{5}$
© $\quad \frac{4}{0.37}$
E 5

Insufficient information is
given to solve this problem.
$\operatorname{Sin} P=\frac{\text { opposite }}{\text { hypotenuse }}$

$$
\begin{array}{r}
\operatorname{Sin} P=\frac{p}{q} \\
\frac{0.37}{1}=\frac{4}{q} \\
0.37 q=4 \\
\frac{0.37 q}{0.37}=\frac{4}{0.37} \\
q=\frac{4}{0.37}
\end{array}
$$

Question 15: (1 points)

$$
\text { Use Identity: } \quad \sin \left(90^{0}-\theta\right)=\operatorname{Cos} \theta
$$

$$
\begin{array}{cc}
\sin \left(90^{\circ}-\theta\right)= \\
\mathbf{C} & \sin (\theta) \\
\mathbf{E} & \cos (\theta) \\
\mathbf{C} & -\sin (\theta) \\
\mathbf{C} & 1+\cos (\theta) \\
\mathbf{C} & -\cos (\theta)
\end{array}
$$

Question 16: (1 points)

For all real numbers $x, \cos ^{2}(4 x)+\sin ^{2}(4 x)=$
E 1
E 0
E $\sin (8 x)$
Use identity: $\begin{array}{r}\operatorname{Sin}^{2} A+\operatorname{Cos}^{2} A=1 \\ A=4 x \\ \operatorname{Cos}^{2} 4 x+\operatorname{Sin}^{2} 4 x=1\end{array}$
E 4
[$\cos (8 x)$

Question 17: (1 points)

For which value(s) of x in the interval $0 \leq x \leq 2 \pi$ does $(\cos (x)-1)(\cos (x)-3)=0$?

E 1 and 3
© $\frac{\pi}{2}$
E π
0 and 2π
© $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$

Set each factor to zero
$\operatorname{Cos} x-1=0 \quad \operatorname{Cos} x-3=0$
$\begin{array}{cc}+1+1 & +3+3 \\ \operatorname{Cos} x=1 & \operatorname{Cos} x=3\end{array}$
$\operatorname{Cos} x=1$ at $x=0^{0}$ and 2π
$\operatorname{Cos} X=3$ is not possible because $-1<\cos x \leq 1$

Answer: $\{0,2 \pi\}$

Question 18: (1 points)

Recall that for the triangle ABC the law of cosines states that $a^{2}=b^{2}+c^{2}-2 b c \cos (\mathrm{~A})$ where a is the length of the side opposite angle A, b is the length of the side opposite angle B, and c is the length of the side opposite angle C.
In the triangle shown in the figure below, what is $\cos (P)$?
Note: The figure is not drawn to scale.

$$
\begin{gathered}
\text { Looking for } P: \quad p^{2}=q^{2}+r^{2}-2 q r \cos P \\
P=4 \quad Q=5 \quad R=8 \\
4^{2}=5^{2}+8^{2}-2(5)(8) \cos P \\
16=25+64-80 \cos P \\
16=89-80 \cos P \\
\frac{-89-89}{\frac{-73}{-80}=\frac{-80}{-80} \cos P} \\
\operatorname{Cos} P=\frac{73}{80}
\end{gathered}
$$

D $\frac{55}{64}$
D $\frac{5}{8}$
C $\frac{4}{5}$
($\quad \frac{73}{80}$
E $\frac{23}{40}$

Question 19: (1 points)

If $f(x)=-2^{x}+x^{2}$, then $f(-1)=$
C 3
(C) $\frac{1}{2}$

Replace x with - 1
C $-\frac{3}{2}$
$f(-1)=-2^{-1}+(-1)^{2}$
$f(-1)=-\frac{1}{2}+1$
© $-\frac{1}{2}$
$f(-1)=-\frac{1}{2}+\frac{2}{2}$
D $\frac{3}{2}$

$$
f(-1)=\frac{1}{2}
$$

Question 20: (1 points)

$$
\begin{aligned}
& \log _{5}\left(\frac{1}{25}\right)= \\
& \text { Use } \boldsymbol{l o g}_{b} x=y \\
& x=b^{y} \\
& \log _{5}\left(\frac{1}{25}\right)=y \\
& \frac{1}{25}=5^{y} \\
& \frac{1}{5^{2}}=5^{y} \\
& 5^{-2}=5^{y} \\
&-2=y
\end{aligned}
$$

E 5
[- 2
E 2
D -5
D $\frac{1}{2}$

